Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 193(5): 510-519, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740181

RESUMO

Fibrotic skin conditions, such as hypertrophic and keloid scars, frequently result from injury to the skin and as sequelae to surgical procedures. The development of skin fibrosis may lead to patient discomfort, limitation in range of motion, and cosmetic disfigurement. Despite the frequency of skin fibrosis, treatments that seek to address the root causes of fibrosis are lacking. Much research into fibrotic pathophysiology has focused on dermal pathology, but less research has been performed to understand aberrations in fibrotic epidermis, leading to an incomplete understanding of dermal fibrosis. Herein, literature on occlusion, a treatment modality known to reduce dermal fibrosis, in part through accelerating wound healing and regulating aberrant epidermal inflammation that otherwise drives fibrosis in the dermis, is reviewed. The review focuses on epidermal-dermal crosstalk, which contributes to the development and maintenance of dermal fibrosis, an underemphasized interplay that may yield novel strategies for treatment if understood in more detail.


Assuntos
Cicatriz Hipertrófica , Queloide , Humanos , Cicatriz Hipertrófica/patologia , Cicatriz Hipertrófica/terapia , Cicatrização/fisiologia , Pele/patologia , Epiderme/patologia , Queloide/patologia , Queloide/terapia , Fibrose
2.
Clin Exp Pharmacol Physiol ; 50(3): 238-246, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36414819

RESUMO

Chronic or delayed healing wounds constitute an ever-increasing burden on healthcare providers and patients alike. Thus, therapeutic modalities that are tailored to particular deficiencies in the delayed wound healing response are of critical importance to improve clinical outcomes. Human amnion-derived viable and devitalized allografts have demonstrated clinical efficacy in promoting the closure of delayed healing wounds, but the mechanisms responsible for this efficacy and the specific wound healing processes modulated by these tissues are not fully understood. Here, we utilized a diabetic murine excisional wound model in which healing is driven by granulation and re-epithelialization, and we applied viable (vHAMA) or devitalized (dHAMA) amnion-derived allografts to the wound bed in order to determine their effects on wound healing processes. Compared to control wounds that were allowed to heal in the absence of treatment, wounds to which vHAMA or dHAMA were applied demonstrated enhanced deposition of granulation tissue accompanied by increased cellular proliferation and increased de novo angiogenesis, while vHAMA-treated wounds also demonstrated accelerated re-epithelialization. Taken together, these data suggest that both vHAMA and dHAMA facilitate wound healing through promoting processes critical to granulation tissue formation. Further understanding of the cellular and tissue mechanisms underlying the effects of tissue-derived matrices on wound healing will enable tailored prescription of their use in order to maximize clinical benefit.


Assuntos
Âmnio , Cicatrização , Humanos , Camundongos , Animais , Tecido de Granulação , Proliferação de Células
3.
J Cosmet Dermatol ; 22(2): 534-541, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35665590

RESUMO

BACKGROUND: Hypertrophic scars (HTS) result from injury to the skin and represent a clinical burden with limited treatment options. Previously, we demonstrated that statin drugs could attenuate HTS formation, but convenient topical delivery and retention of these drugs at the wound site remains a challenge. AIMS: Here, we aimed to develop a topical cream formulation that can deliver statin drugs simply and conveniently to reduce scar hypertrophy. METHODS: We formulated creams containing 10% pravastatin, 2% simvastatin, and 10% simvastatin. We tested these creams for their ability to reduce scar hypertrophy and attenuate dermal fibrosis in a clinically relevant HTS wound model performed in rabbit ear skin. We also monitored trans-epidermal water loss (TEWL) over the course of wound healing in order to understand the effects of statin treatment on epidermal barrier recovery. RESULTS: Of the three creams formulated, only application of 10% simvastatin cream significantly attenuated hypertrophy of resultant scars compared with vehicle cream application. Application of 10% simvastatin cream resulted in a decrease in macrophage and myofibroblast density at post-operative day 28 (POD28) harvest. Application of 10% simvastatin cream resulted in visible symptoms of dryness and increased TEWL at POD28, but subsequent withdrawal of statin cream treatment resulted in rapid alleviation of dryness and decrease in TEWL back to normal levels. CONCLUSIONS: Our data demonstrate that topical administration of 10% simvastatin cream antagonizes dermal fibrosis and reduces hypertrophy in an HTS model, and withdrawal of the cream enables recovery of epidermal barrier and resolution of skin dryness.


Assuntos
Cicatriz Hipertrófica , Inibidores de Hidroximetilglutaril-CoA Redutases , Animais , Coelhos , Cicatriz Hipertrófica/tratamento farmacológico , Cicatriz Hipertrófica/etiologia , Cicatriz Hipertrófica/patologia , Sinvastatina/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Pele , Hipertrofia/patologia
4.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166482, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35803527

RESUMO

Damage to epidermis results in loss of barrier function and resultant pathological inflammatory signaling, triggering further damage to the skin. Here we investigate transcriptomic datasets generated from varied skin pathologies associated with disrupted epidermis and pinpoint CD14/S100 signaling as a conserved pathway upregulated in dermatopathologies characterized by a compromised epidermal barrier. We show that dermatitic and fibrotic tissues of humans and mouse models, which are associated with compromised epidermal barrier, demonstrate upregulation of CD14 and S100 proteins, damage-associated molecular patterns (DAMPs), in the epidermis. In vitro stratified keratinocyte cultures exposed to reduced hydration conditions show upregulated CD14/S100 family genes and pro-inflammatory gene expression, as well as decreased barrier gene expression. Knockdown and overexpression of CD14 in stratified keratinocyte cultures suppresses and induces expression, respectively, of S100 family genes and CXCL8. Taken together, these data suggest that upregulation of CD14 and/or S100 family genes in pathological epidermis results in potentiated inflammatory signaling, leading to diminished epidermal barrier function that may yield further inflammation. Future strategies to target CD14 may be utilized to dampen the response to epithelial injury for conditions of the skin and other organs.


Assuntos
Citocinas , Epiderme , Receptores de Lipopolissacarídeos , Alarminas , Animais , Citocinas/metabolismo , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Humanos , Inflamação/metabolismo , Queratinócitos/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Camundongos , Proteínas S100/genética , Proteínas S100/metabolismo
5.
Cell Mol Life Sci ; 78(14): 5469-5488, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34100980

RESUMO

Within an articulately characterized family of ion channels, the voltage-gated sodium channels, exists a black sheep, SCN7A (Nax). Nax, in contrast to members of its molecular family, has lost its voltage-gated character and instead rapidly evolved a new function as a concentration-dependent sensor of extracellular sodium ions and subsequent signal transducer. As it deviates fundamentally in function from the rest of its family, and since the bulk of the impressive body of literature elucidating the pathology and biochemistry of voltage-gated sodium channels has been performed in nervous tissue, reports of Nax expression and function have been sparse. Here, we investigate available reports surrounding expression and potential roles for Nax activity outside of nervous tissue. With these studies as justification, we propose that Nax likely acts as an early sensor that detects loss of tissue homeostasis through the pathological accumulation of extracellular sodium and/or through endothelin signaling. Sensation of homeostatic aberration via Nax then proceeds to induce pathological tissue phenotypes via promotion of pro-inflammatory and pro-fibrotic responses, induced through direct regulation of gene expression or through the generation of secondary signaling molecules, such as lactate, that can operate in an autocrine or paracrine fashion. We hope that our synthesis of much of the literature investigating this understudied protein will inspire more research into Nax not simply as a biochemical oddity, but also as a potential pathophysiological regulator and therapeutic target.


Assuntos
Fibrose/fisiopatologia , Homeostase , Inflamação/fisiopatologia , Sódio/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Humanos , Transdução de Sinais , Canais de Sódio Disparados por Voltagem/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...